Brownian Dynamics Computational Model of Protein Diffusion in Crowded Media with Dextran Macromolecules as Obstacles

نویسندگان

  • Pablo M. Blanco
  • Mireia Via
  • Josep Lluís Garcés
  • Sergio Madurga
  • Francesc Mas
چکیده

The high concentration of macromolecules (i.e., macromolecular crowding) in cellular environments leads to large quantitative effects on the dynamic and equilibrium biological properties. These effects have been experimentally studied using inert macromolecules to mimic a realistic cellular medium. In this paper, two different experimental in vitro systems of diffusing proteins which use dextran macromolecules as obstacles are computationally analyzed. A new model for dextran macromolecules based on effective radii accounting for macromolecular compression induced by crowding is proposed. The obtained results for the diffusion coefficient and the anomalous diffusion exponent exhibit good qualitative and generally good quantitative agreement with experiments. Volume fraction and hydrodynamic interactions are found to be crucial to describe the diffusion coefficient decrease in crowded media. However, no significant influence of the hydrodynamic interactions in the anomalous diffusion exponent is found.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion in crowded biological environments: applications of Brownian dynamics

Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of macromolecules in the range of 50 - 400 mgml. Molecular species occupy a significant fraction of the immersing medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed 'crowded' and/or 'confined'. In crowded conditions non-specific interactions betwee...

متن کامل

Brownian Dynamics Simulation of Macromolecule Diffusion in a Protocell.

The interiors of all living cells are highly crowded with macromolecules, which differs considerably the thermodynamics and kinetics of biological reactions between in vivo and in vitro. For example, the diffusion of green fluorescent protein (GFP) in E. coli is ~10-fold slower than in dilute conditions. In this study, we performed Brownian dynamics (BD) simulations of rigid macromolecules in a...

متن کامل

Importance of Excluded Volume and Hydrodynamic Interactions on Macromolecular Diffusion in Vivo.

The interiors of all living cells are highly crowded with macromolecules, which results in a considerable difference between the thermodynamics and kinetics of biological reactions in vivo from that in vitro. To begin to elucidate the principles of intermolecular dynamics in the crowded environment of cells, employing Brownian dynamics (BD) simulations, we examined possible mechanism(s) respons...

متن کامل

Macromolecular crowding directs the motion of small molecules inside cells

It is now well established that cell interiors are significantly crowded by macromolecules, which impede diffusion and enhance binding rates. However, it is not fully appreciated that levels of crowding are heterogeneous, and can vary substantially between subcellular regions. In this article, starting from a microscopic model, we derive coupled nonlinear partial differential equations for the ...

متن کامل

Diffusion of alpha-chymotrypsin in solution-crowded media. A fluorescence recovery after photobleaching study.

Fluorescence recovery after photobleaching (FRAP) is one of the most powerful and used techniques to study diffusion processes of macromolecules in membranes or in bulk. Here, we study the diffusion of alpha-chymotrypsin in different crowded (Dextran) in vitro solutions using a confocal laser scanning microscope. In the considered experimental conditions, confocal FRAP images could be analyzed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017